Sachant que \(\sin x = \frac{3}{5}\) et \(x \in [0, \frac{\pi}{2}]\), calculer \(\cos x\) et \(\tan x\).
Solution :
\(\sin^2x + \cos^2x = 1 \Rightarrow \cos x = \sqrt{1 – (\frac{3}{5})^2} = \frac{4}{5}\) (car cos positif sur \([0, \frac{\pi}{2}]\))
\(\tan x = \frac{\sin x}{\cos x} = \frac{3/5}{4/5} = \frac{3}{4}\)
Exercice 3: Formules d’addition
Calculer \(\sin(\frac{\pi}{12})\) en utilisant \(\frac{\pi}{12} = \frac{\pi}{3} – \frac{\pi}{4}\).
Solution :
\(\sin(a-b) = \sin a \cos b – \cos a \sin b\)
\(\sin(\frac{\pi}{12}) = \sin(\frac{\pi}{3})\cos(\frac{\pi}{4}) – \cos(\frac{\pi}{3})\sin(\frac{\pi}{4})\)
\(= \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} – \frac{1}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{6} – \sqrt{2}}{4}\)
Exercice 4: Formules de duplication
Simplifier \(\sin(2x) \cos x – \cos(2x) \sin x\).
Solution :
On reconnaît \(\sin(a-b) = \sin a \cos b – \cos a \sin b\) avec \(a = 2x\) et \(b = x\)
Donc \(\sin(2x) \cos x – \cos(2x) \sin x = \sin(2x – x) = \sin x\)
Exercice 5: Équation trigonométrique
Résoudre dans \(\mathbb{R}\) : \(\sin x = \frac{1}{2}\).