

مباراة توظيف أساتذة التعليم الثانوي الأطر النظامية للأكاديميات دورة نونبر 2022 الموضوع

أربع ساعات	مدة	اختبار في مادة أو مواد التخصص	الاختبار
6.5	الإنجاز:	الفيزياء والكيمياء	التخصص
10	المعامل	اسيرياء والميمياء	

www.educaprof.com

Consignes et instructions importantes

- 1. L'épreuve comporte 60 questions de la question Q1 à la question Q60
- Chaque question comporte 4 choix de réponses (A, B, C, D) dont une seule réponse est juste ;
- Chaque candidat(e) n'a le droit d'utiliser qu'une seule feuille réponse. Il est impossible de remplacer la feuille réponse initiale du candidat(e) par une autre;
- 5. La rature ou l'utilisation du Blanco sur la feuille réponse sont strictement INTERDITES;
- 6. L'usage de la calculatrice scientifique non programmable est autorisé;
- la possession des téléphones mobiles, de tout appareil électronique intelligent et des documents papiers est strictement INTERDITE dans la salle de passation;
- Toute réponse ne respectant pas les règles citées ci-dessus sera rejetée ;
- 9. Les questions seront notées selon une pondération allant d'un (1) point à trois (3) points ;
- 10. Chaque réponse incorrecte sera notée par zéro (0).

Atomistique, linisons chimiques et cristallographie (8 points)

Partie I: Atomistique et liaison chimique

Les nombres quantiques de l'électron célibataire d'un atome ont pour valeur :

$$m=4$$
; $\ell=2$; $m_{\ell}=+2$; $m_{r}=+\frac{1}{2}$.

Le numéro atomique de cet élément chimique est :

	-
A	Z = 1

$$B = Z = 21$$

$$C = Z = 39$$

D
$$Z = 45$$

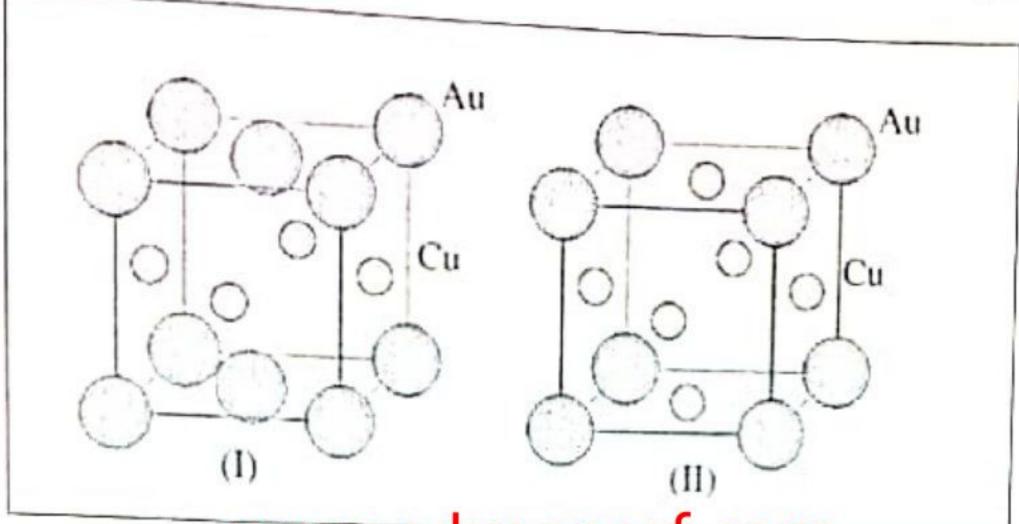
www.educaprof.com

02	Parmi ces affirmations, laquelle est correcte ?
	Les halogènes sont des réducteurs
В	Les alcalins forment facilement des oxydes
C	Les alcalino-terreux captent facilement des électrons au cours des réactions chimiques
D	Les métaux de transition ont tous la même structure électronique de valence

OX	Pour la même molécule, laquelle des affirmations suivantes est correcte ?				
	Molécule	Nature de la liaison	Géométrie	Polarité	
A	CH_2CI_2	4 liaisons covalentes non polaires	AX ₃ E	Polaire	
В	H_3PO_4	6 liaisons covalentes non polaires	AX4	Apolaire	
C	_HClO ₃	4 liaisons covalentes polaires	AX ₃ E	Polaire	
D	NaHCO,	4 liaisons covalentes non polaires 1 liaison ionique	AX ₃	Polaire	

Partie II : Sites cristallographiques et formule chimique

l'or et le cuivre cristallisent tous deux dans le système cubique à faces centrées compact. Le rayon nétallique du cuivre est noté $R_{(Cu)}$.


9.	Le paramètre cristallin $a_{(Cu)}$ du cuivre a pour expression :
A	$a_{(Cir)} = \frac{R_{(Cir)}}{\sqrt{2}}$
В	$a_{(Cu)} = \frac{2.R_{(Cu)}}{\sqrt{2}}$
C.	$a_{(Cu)} = \frac{4.R_{(Cu)}}{\sqrt{2}}$
D	$a_{(Cu)} = \frac{\sqrt{2}}{4.R_{(Cu)}}$

مباراة توظيف أساتذة التعليم الثانوي الأطر النظامية للأكاديميات - دورة نونبر 2022

التخصص: الفيزياء والكيمياء

الموضوع الاختبار: اختبار في مادة أو مواد التخصص

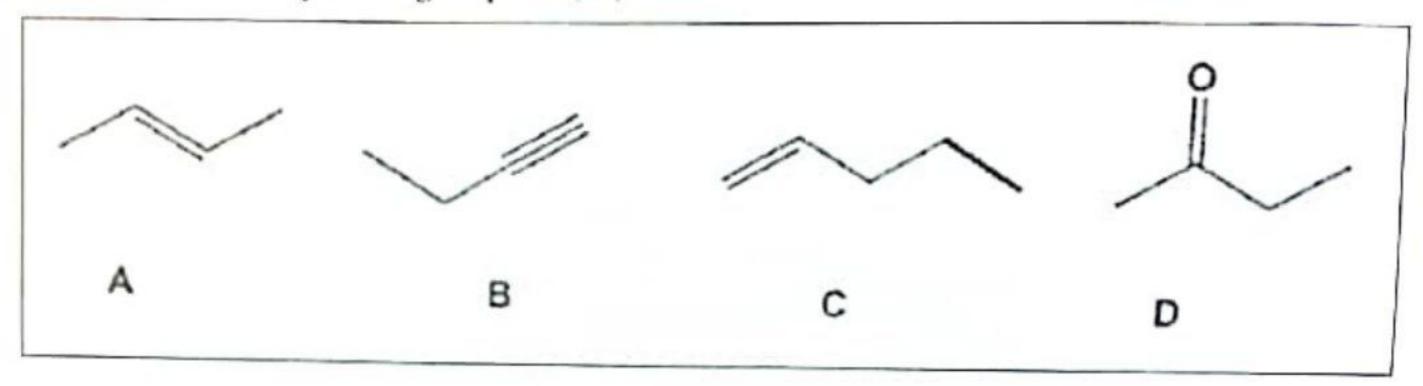
À température ambiante, l'or et le cuivre sont susceptibles de donner deux alliages ordonnés représentés ci-dessous (composés I et II).

www.educaprof.com

Q5	Les formules de ces deux composés sont :	
	Composé (I)	Composé (II)
A	AuCu	$AuCu_2$
В.	AuCu	$AuCu_{3}$
C	Au_2Cu	$AuCu_1$
D	$AuCu_2$	$Au_{3}Cu$

Chimie organique et méthodes physicochimiques (6 points)

On considère la molécule suivante :


Q6	Le nom correct de cette molécule selon la nomenclature UICPA est :	
Α.	3-bromo-2-hydroxy hex-3-èn-1,5-dione	
В	4-bromo-5-hydroxy-6-oxo hex-3-èn-2-one	
C	3-bromo-2-hydroxy-5-oxo hex-3-ènal	
D	4-bromo-2,6-dioxo hex-3-èn-5-ol	

On considère le composé organique suivant :

4 23	مباراة توظيف أساتذة التعليم الثانوي الأطر النظامية للأكاديميات - دورة نوثبر 2022	
4	الموضوع	
23	الاختبار: اختبار في مادة أو مواد التخصص التخصص: الفيزياء والكيمياء	

Q7	La proposition correcte pour ce composé est :	
A	e groupe prioritaire est la fonction cétone	
В	Le groupe prioritaire est la fonction alcool Le groupe prioritaire est la fonction alcool WWW.educaprof.con	
C	Le groupe prioritaire est la fonction aldéhyde	
D	Le groupe prioritaire est la fonction ester	

On considère les composés organiques A, B, C et D suivants :

08	Parmi les propositions suivantes concernant la déshydratation du butan-2-ol, la proporte correcte est :	
A	Le composé A peut se former lors de la déshydratation du butan-2-ol	
В	Le composé B peut se former lors de la déshydratation du butan-2-ol	
C	Le composé C peut se former lors de la déshydratation du butan-2-ol	
D	Le composé D peut se former lors de la déshydratation du butan-2-ol	

On considère la transformation des fonctions alcool de l'isosorbide.

09	La proposition correcte est :	
Α.	HNO ₃ est nécessaire pour réaliser cette transformation	
В	HNO ₂ est nécessaire pour réaliser cette transformation	
C	NO ₂ est nécessaire pour réaliser cette transformation	
D	Cette transformation est une nitrosation	

التخصص: الفيزياء والكيمياء

الاختبار: اختبار في مادة أو مواد التخصص

Thermodynamique chimique et équilibres chimiques (4 points) Partie I : Enthalpie de réaction

La combustion totale d'une mole de méthanol $CH_3OH_{(t)}$ liquide dans les conditions standards de pression et de température, libère 725,2 kJ selon la réaction suivante :

$$CH_3OH_{(t)} + \frac{3}{2}O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(t)}$$
. www.educaprof.com

Données:

Enthalpies molaires standards de formations de H₂O_(t) et de CO_{2(g)} :

$$\Delta h_{f,298K}^{0}\left(H_{2}O_{(\ell)}\right) = -285, 2 \ kJ.mol^{-1} \quad ; \quad \Delta h_{f,298K}^{0}\left(CO_{2(g)}\right) = -393, 5 \ kJ.mol^{-1}$$
Chaleurs malaises in the contract of t

Chaleurs molaires à pression constante :

$$C_p(H_2O_{(\ell)}) = 75,2 \ J.mol^{-1}.K^{-1}$$
; $C_p(CH_3OH_{(\ell)}) = 81,6 \ J.mol^{-1}.K^{-1}$

$$C_p(O_{2(g)}) = 34,7 \ J.mol^{-1}.K^{-1}$$
; $C_p(CO_{2(g)}) = 36,4 \ J.mol^{-1}.K^{-1}$

010 La valeur de l'enthalpie molaire standard de formation du méthanol liquide vaut :

A
$$\Delta h_{f,298}^{0}(CH_{3}OH_{(t)}) = -46.5 \text{ kJ.mol}^{-1}$$

B
$$\Delta h_{f,298K}^{0}(CH_{3}OH_{(t)}) = -154.8 \text{ kJ.mol}^{-1}$$

C
$$\Delta h_{f,298K}^0(CH_3OH_{(t)}) = -238,7 \text{ kJ.mol}^{-1}$$

$$D \qquad \Delta h_{f,298K}^{0}(CH_{3}OH_{(t)}) = -691,7 \text{ kJ.mol}^{-1}$$

La valeur de l'enthalpie de cette réaction à 60°C vaut :

A
$$\Delta H_{r,333K}^0 = -645,50 \text{ kJ}$$

$$B = \Delta H_{r,333K}^0 = -700,34 \text{ kJ}$$

$$C = \Delta H_{e,333K}^0 = -723,34 \text{ kJ}$$

$$\mathbf{D} \quad \Delta H_{r,333K}^{0} = -467,77 \ kJ$$

Partie II : Constante d'équilibre

Les équilibres suivants :
$$NH_3 + \frac{5}{4}O_2 \rightleftharpoons NO + \frac{3}{2}H_2O$$
 (1) et $NO_2 \rightleftharpoons NO + \frac{1}{2}O_2$ (2) ont respectivement pour constantes d'équilibre K_1 et K_2 .

L'expression, en fonction de K_1 et K_2 , de la constante d'équilibre K_3 pour l'équilibre :

$$2NH_3 + \frac{7}{2}O_2 \rightleftharpoons 2NO_2 + 3H_2O$$
 est:

$$\mathbf{A} \qquad K_3 = K_1.K_2$$

$$\mathbf{B} \quad K_3 = \left(\frac{K_1}{K_2}\right)^2$$

$$\mathbf{C} \qquad K_3 = \left(\frac{K_2}{K_1}\right)^2$$

$$\mathbf{D} = \frac{1}{K_1 \cdot K_2}$$

مباراة توظيف أساتذة التعليم الثانوي الأطر النظامية للأكاديميات - دورة نونبر 2022

التخصص: الفيزياء والكيمياء

الاختبار: اختبار في مادة أو مواد التخصص

Cinétique chimique et catalyse (4 points)

On considère la réaction d'oxydoréduction d'équation : $2Fe_{(aq)}^{3+} + Sn_{(aq)}^{2+} \rightarrow Sn_{(aq)}^{4+} + 2Fe_{(aq)}^{2+}$

La loi de vitesse de cette réaction est de la forme : $v = +\frac{d[Sn^{4+}]}{dt} = k.[Fe^{3+}]^{\alpha}.[Sn^{2+}]^{\beta}$ On opère avec un 1

On opère avec un large excès de Fe^{3+} . On constate alors que le temps de demi-réaction concernant la disparition des ions Sn2+ est indépendant de leur concentration initiale.

013	La valeur de β vaut :	
A	$\beta = 1$	
В	$\beta = 2$	
C	$\beta = 3$	
D	$\beta = 4$	

On réalise des mélanges stœchiométriques de différentes concentrations C_0 en ions Fe^{3+} . On constate que le temps de demi-réaction dépend de C_0 .

La relation liant $t_{1/2}$, C_0 et α est:

 $t_{1/2} = \frac{2^{\alpha}}{k \cdot \alpha \cdot (C_0)^{\alpha}}$ В www.educaprof.com

 $t_{1/2} = \frac{2^{\alpha}.k.\alpha.(C_0)^{\alpha}}{2^{\alpha}-1}$ C D

Le temps de demi-réaction t_{yz} est divisé par quatre (4) lorsque C_0 est multiplié par deux (2).

A $\alpha = 4$

 \mathbf{B} $\alpha = 3$

C $\alpha = 2$

D $\alpha = 1$

مباراة توظيف أساتذة التعليم الثانوي الأطر النظامية للأكاديميات - دورة نونبر 2022 الموضوع

التخصص: الفيزياء والكيمياء

الاختبار: اختبار في مادة أو مواد التخصص

Chimie des solutions aqueuses et électrochimie (18 points)

Partie I : Mélange d'acides et de bases - réaction prépondérante

Dans un litre d'eau à 298 K, on introduit $n_1 = 0.15 \, mol$ de chlorure d'hydrogène HCl, $n_2 = 0.10 \, mol$ d'hydrogénosulfure de sodium NaIIS et $n_3 = 0.15 \, mol$ d'acétate de sodium $NaCH_3CO_2$.

$$\frac{Données \ \hat{a} \ 25^{\circ}C}{pK_{A3}} = pK_{A}(H_{2}S_{(aq)} / HS_{(aq)}^{-}) = 7,0 \qquad ; \qquad pK_{A2} = pK_{A}(HS_{(aq)}^{-} / S_{(aq)}^{2-}) = 13,0$$

$$pK_{A3} = pK_{A}(CH_{3}CO_{2}H_{(aq)} / CH_{3}CO_{2(aq)}^{-}) = 4,8$$

Q16	La composition du système à l'équilibre chimique est :		
A	$[CH_3CO_2H] = 0.05 \text{ mol.}L^{-1}$	$[CH_3CO_2^-] = 0.10 \text{ mol.}L^{-1}$	$[H_2S] = 0.10 \ mol.L^{-1}$
В	$[H_3O^+] = 0.05 \ mol.L^{-1}$	$[CH_3CO_2^-] = 0.10 \ mol.L^{-1}$	$[H_2S] = 0.01 \ mol.L^{-1}$
C	$[CH_3CO_2H] = 0.1 \ mol.L^{-1}$	$[CH_3CO_2] = 0.05 \ mol.L^{-1}$	$[HS^-] = 0.10 \text{ mol.}L^{-1}$
D	$[CH_3CO_2H] = 0.05 \text{ mol.L}^{-1}$	$[CH_3CO_2^-] = 0.10 \ mol.L^{-1}$	$[H_3O^+] = 0.05 \text{ mol.}L^{-1}$

Partie II : Solubilité de l'acide benzoïque

La réaction de dissolution de l'acide benzoïque dans l'eau s'écrit : $C_6H_5CO_2H_{(s)} \rightleftharpoons C_6H_5CO_2H_{(aq)}$.

Sa constante d'équilibre thermodynamique est notée $K_x = 10^{-1.5}$ à 298 K.

Données:
$$pK_A(C_6H_5CO_2H_{(aq)}/C_6H_5CO_{2(aq)}) = 5$$
; $pK_e = 14$

017	La solubilité s de l'acide benzoïque en négligeant sa réaction avec l'eau est :
A	$s = 2,20.10^{-1} \ mol.L^{-1}$
В	$s = 3,20.10^{-3} \ mol.L^{-1}$
·C	$s = 3.16.10^{-2} \ mol.L^{-1}$
D	$s = 4,00.10^{-2} \text{ mol.} L^{-1}$ www.educaprof.com

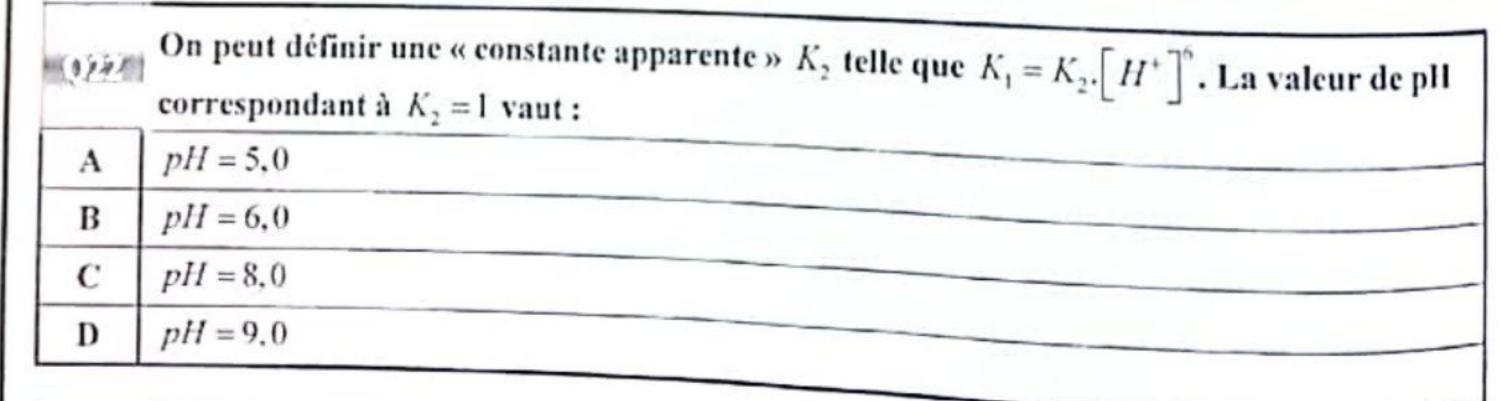
018	La solubilité s' de l'acide benzoïque en tenant compte de ses propriétés acido-basiques est :
	$s' = 4,22.10^{-2} \ mol.L^{-1}$
, B	$s' = 3,22.10^{-2} \ mol.L^{-1}$
C	$s' = 5,50.10^{-2} \ mol.L^{-1}$
D	$s' = 5,22.10^{-2} \ mol.L^{-1}$

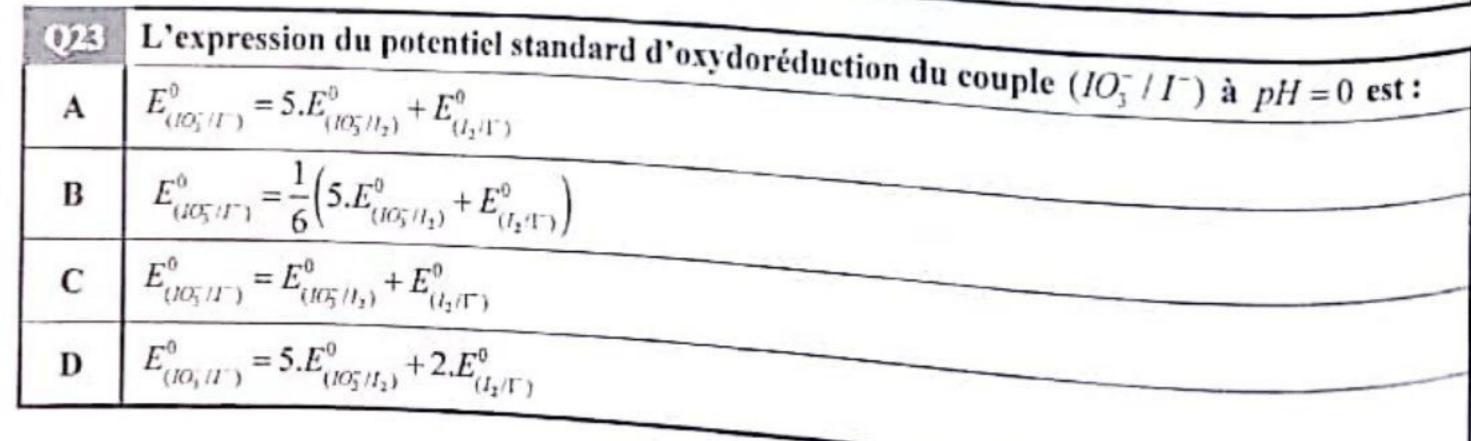
Q19	Le pH d'une solution aqueuse saturée d'acide benzoïque à 298 K est :	
A	pII = 2,40	
В	pH = 3,25	
C	pH = 4.05	
D	pH = 4,25	

	مباراه توطيف اسائدة التعليم الثاته ي الأمل بندن م
8 23	مباراة توظيف اسائدة التعليم الثانوي الأطر النظامية للأكاديميات - دورة نونبر 2022 الاختيار واخترار في ادار المرضوع
8	المسجر . السبار في مادة أو مو أد الدوم
23	التخصص: الفيزياء والكيمياء

Le benzoate de sodium $NaC_6H_5CO_{2(s)}$ est un sel ionique soluble dans l'eau. On dispose d'un volume $V_0=1$ L d'une solution aqueuse $Na_{(aq)}^++C_6H_5CO_{2(aq)}^-$ de ce sel à la concentration molaire $C_0=3,52.10^{-1}$ $mol.L^{-1}$. À cette solution on ajoute une solution concentrée d'acide chlorhydrique. L'acide introduit étant fortement concentré, on pourra négliger la variation du volume de la solution.

(020)	Le pH de précipitation est :	on de l'acide benzoïque lors de l'addition de l'acide chlorhydrique
A	pH = 4,00	
В	pH = 4,20	www.educaprof.com
C	pH = 5,00	
D	pH = 6,00	


Partie III : Dismutation du diiode


L'équation de la réaction de dismutation du diiode aqueux en iodure I^- et iodate IO_3^- est :

 $3 I_{2(aq)} + 3 H_2 O \rightleftharpoons 5 I^- + IO_3^- + 6 H^+$.

<u>Données</u>: $E^{0}(I_{2(aq)}/I_{(aq)}^{-}) = 0,621 V$; $E^{0}(IO_{3(aq)}^{-}/I_{2(aq)}) = 1,20 V$

(21)	La constante d'équilibre K_1 associée à l'équation de la réaction de dismutation du diiode aqueux est :
A	$K_1 = 5, 6.10^{-49}$
В	$K_1 = 7.8.10^{-46}$
C	$K_1 = 4, 5.10^{-42}$
D	$K_1 = 8, 6.10^{-19}$

الصفعة 9 23

مباراة توظيف أساتذة التعليم الثانوي الأطر النظامية للأكاديميات - دورة نونبر 2022 الموضوع

الموصوع التخصص: الفيزياء والكيمياء الاختبار في مادة أو مواد التخصص التخصص: الفيزياء والكيمياء

Partie IV: Transformation chimique dans une pile

Au sein d'une pile se produit une transformation chimique modélisée par l'équation chimique suivante où les concentrations initiales des différents réactifs et produits sont données : $Zn_{co} + 2Fe(CN)^{3}$ (0.1 mod I^{-1}) : (CN)

 $Zn_{(s)} + 2Fe(CN)_6^{3-}(0,1 \ mol.L^{-1}) + 4CN^-(0,65 \ mol.L^{-1}) \rightarrow Zn(CN)_4^{2-}(0,25 \ mol.L^{-1}) + 2Fe(CN)_6^{4-}(0,15 \ mol.L^$

Q24	L'écriture conventionnelle (schéma conventionnel) de la pile est :		
A	(+) $Zn Zn(CN)_4^{2-}$, $CN^- Fe(CN)_6^{3-}$, $Fe(CN)_6^{4-} Pt(-)$		
В	$(-)Zn Zn(CN)_4^{2-} Fe(CN)_6^{3-},Fe(CN)_6^{4-} Pt(+)$		
C	$(-)Zn Zn(CN)_4^{2-},CN^- Fe(CN)_6^{3-},Fe(CN)_6^{4-} Pt(+)$		
D	$(-)$ Zn $ $ Zn(CN) $_4^{2-} $ Fe(CN) $_6^{3-}$ Fe(+) www.educaprof.com		

025	La f.e.m. de la pile vaut :	
A	$\mathcal{E}' = +1,1016 \ V$	
В	$\mathcal{E} = +1,6056 V$	
C	$\mathscr{E} = +1,6000 \ V$	
D	$\mathcal{E} = +0,9000 V$	

Partie V: Influence du potentiel sur les concentrations

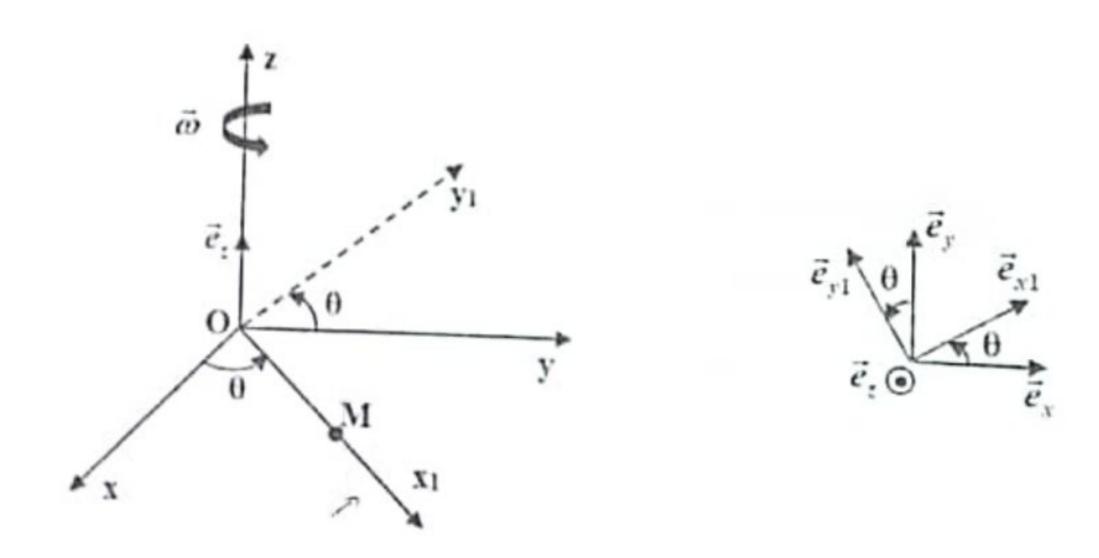
On plonge un fils de platine Pt dans une solution contenant les ions Fe^{2+} et Fe^{3+} telle que : $[Fe^{2+}] = [Fe^{3+}] = 10^{-2} \ mol.L^{-1}$. Le potentiel pris par l'électrode Pt vaut $E_{Pt} = 0.68 \ V$.

On impose à l'électrode précédente le potentiel E = 0,73 V et on attend que l'équilibre soit établi.

Donnée: $E^{0}(Fe^{3+}/Fe^{2+}) = 0.68 \text{ V dans } H_{2}SO_{4} \text{ à } 1 \text{ mol.} L^{-1}$.

Q26	Les concentrations molaires effective	ves finales en ions Fe^{2+} et Fe^{3+} valent :
2174	$[Fe^{2+}] = 2,5.10^{-3} mol.L^{-1}$	$[Fe^{3+}] = 1,75.10^{-2} mol.L^{-1}$
В	$[Fe^{2+}] = 7,5.10^{-3} mol.L^{-1}$	$[Fe^{3+}] = 2,5.10^{-3} mol.L^{-1}$
С	$\lceil Fe^{2+} \rceil = 1,75.10^{-2} mol.L^{-1}$	$[Fe^{3+}] = 7,5.10^{-3} mol.L^{-1}$
D	$\lceil Fe^{2+} \rceil = 2, 5.10^{-2} mol. L^{-1}$	$[Fe^{3+}] = 1,75.10^{-2} mol.L^{-1}$

مباراة توظيف أساتذة التعليم الثانوي الأطر النظامية للأكاديميات - دورة نونبر 2022 العوضوع الاختبار : اختبار في مادة أو مواد التخصص التخصص : الغيزياء والكيمياء


Physique (60 points)

Mécanique du point et du solide (23 points)

Partie I: Anneau en rotation sur une tige

On considère un repère fixe $\mathcal{R}(O,x,y,z)$ muni d'une base orthonormée $(\vec{e}_x,\vec{e}_y,\vec{e}_z)$. L'axe Oz, est vertical ascendant. Une tige Ox_1 tourne autour de l'axe Oz, en restant à tout instant dans le plan xOy, avec une vitesse angulaire $\vec{w}(\mathcal{R}_1/\mathcal{R}) = \omega_0 \vec{e}_z$ (ω_0 constant). Notons $\mathcal{R}_1(O,x_1,y_1,z)$ le repère lié à la tige et en mouvement par rapport à \mathcal{R} . Soit $(\vec{e}_{x_1},\vec{e}_{y_1},\vec{e}_z)$ la base de \mathcal{R}_1 .

Un anneau M, considéré comme un point matériel de masse m, se déplace sans frottement suivant Ox_1 . M est soumis à son poids \vec{P} , à la réaction \vec{T} de la tige et la force $\vec{F} = -mK(r-a)\vec{e}_{x1}$; où $r = \|\overrightarrow{OM}\|$ et K et a des constantes positives. L'accélération de la pesanteur \vec{g} est supposée constante.

Les expressions de la	vitesse relative \vec{V} (10)	ecélération relative $\vec{\gamma}_{\mathfrak{R}}(M)$ de M
sont:	g (M) et l'ac	célération relative & (1/) de 1/
-		$f_{\mathcal{B}_{i}}(M)$ de M

A
$$\vec{V}_{\mathcal{R}_i}(M) = \dot{r}.\vec{e}_{x1}$$
 ; $\vec{\gamma}_{\mathcal{R}_i}(M) = \ddot{r}.\vec{e}_{x1}$

B
$$\vec{V}_{\mathcal{R}_i}(M) = \dot{r}.\vec{e}_{x1} + r\omega_0\vec{e}_{y1}$$
; $\vec{\gamma}_{\mathcal{R}_i}(M) = \ddot{r}.\vec{e}_{x1}$

$$C \qquad \vec{V}_{\mathcal{R}_{i}}(M) = r\omega_{0}\vec{e}_{y1} \quad ; \quad \vec{\gamma}_{\mathcal{R}_{i}}(M) = \vec{r}.\vec{e}_{x1}$$

D
$$\vec{V}_{\mathcal{R}_1}(M) = \dot{r}.\vec{e}_{x1}$$
; $\vec{\gamma}_{\mathcal{R}_1}(M) = \ddot{r}.\vec{e}_{x1} + r.\omega_0^2 \vec{e}_{x1}$

مباراة توظيف أساتذة التعليم الثانوي الأطر النظامية للأكاديميات - دورة نونبر 2022 الموضوع

التخصص: الفيزياء والكيمياء

الاختبار: اختبار في مادة أو مواد التخصص

www.educaprof.com

	I oc and	
(0)	Les expressions de l'accélération d'entrainem	ent v et l'accélération complémentaire v
	de M sont :	ient feet i acceleration complementance
-	7	

A
$$\vec{\gamma}_c = 2\vec{r}.\omega_0.\vec{e}_{x1}$$
; $\vec{\gamma}_c = -r.\omega_0^2.\vec{e}_{y1}$

B
$$\vec{\gamma}_e = r.\omega_0^2.\vec{e}_{x1}$$
 ; $\vec{\gamma}_c = -2\dot{r}.\omega_0.\vec{e}_{y1}$

C
$$\vec{\gamma}_e = -2\dot{r}.\omega_0.\vec{e}_{x1}$$
; $\vec{\gamma}_e = r.\omega_0^2.\vec{e}_{y1}$

D.
$$\vec{\gamma}_e = -r.\omega_0^2.\vec{e}_{x1}$$
; $\vec{\gamma}_e = 2\dot{r}.\omega_0.\vec{e}_{y1}$

Les expressions des forces d'inertie d'entrainement \vec{F}_{κ} et de Coriolis \vec{F}_{κ} subis par M sont :

$$\mathbf{A} \quad \vec{F}_{tc} = -mr\omega_0^2 \vec{e}_{x1} \quad ; \quad \vec{F}_{tc} = 2m\dot{r}\omega_0 \vec{e}_{y1}$$

$$\mathbf{B} \qquad \vec{F}_{ie} = mr\omega_0^2 \vec{e}_{x1} \qquad ; \qquad \vec{F}_{ie} = -2m\dot{r}\omega_0 \vec{e}_{y1}$$

$$\mathbf{C} \qquad \vec{F}_{ie} = mr\omega_0 \vec{e}_{x1} \qquad ; \qquad \vec{F}_{ic} = -2m\dot{r}\omega_0 \vec{e}_{y1}$$

$$\mathbf{D} \qquad \vec{F}_{ie} = mr\omega_0 \vec{e}_{x1} \qquad ; \qquad \vec{F}_{ie} = -2m\dot{r}\omega_0^2 \vec{e}_{y1}$$

(C)455(F1943(C)				
030	L'équation différentielle du mouvement	de	M	s'écrit:

$$\ddot{r} + r(K - \omega_0^2) = Ka^2$$

$$\mathbf{B} \cdot \ddot{r} + r(K^2 - \omega_0^2) = Ka$$

$$C \circ \ddot{r} + r(K - \omega_0^2) = Ka$$

$$\mathbf{D} \qquad \ddot{r} + r(K - \omega_0^2) = 0$$

L'expression de l'intensité de la réaction
$$\vec{T}$$
 de la tige Ox_1 sur M est:

$$A T = m\sqrt{g^2 + \dot{r}^2 \omega_0^2}$$

$$\mathbf{B} \qquad T = m\sqrt{g^2 + 4\dot{r}^2\omega_0^2}$$

$$C \qquad T = m\sqrt{g^2 + 4r^2\omega_0^2}$$

$$\mathbf{D} \qquad T = m\sqrt{g^2 + r^2\omega_0^2}$$

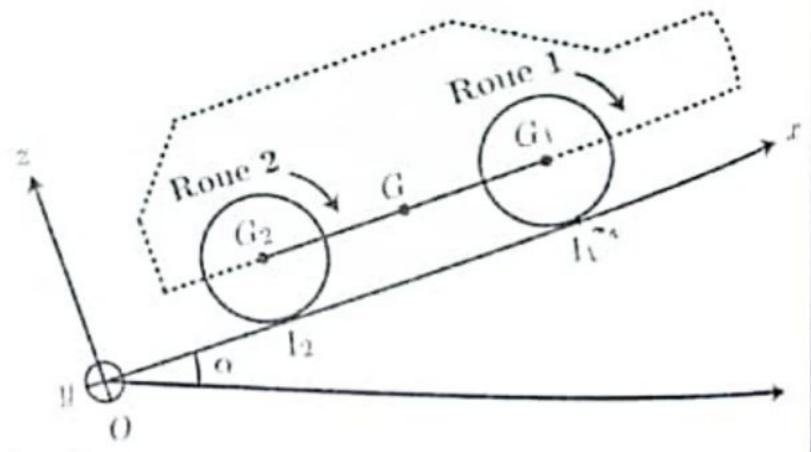
رم سوي الاطر النظامية للأكاديميات - دورة نونبر 2022 الموضوع الموضوع التخصص : الفيزياء والكيمياء والكيمياء

الاختبار: اختبار في مادة أو مواد التخصص

L'équation horaire du mouvement de M dans \mathcal{R} s'écrit : $\lambda t_0 = 0$; r = a et $\dot{r} = 0$ (On a $K < \omega_0^2$ et on posera $\lambda^2 = K - \omega_0^2$) (0×74

A
$$r(t) = \frac{a\omega_0^2}{\lambda^2} \cos(\lambda t) + \frac{Ka}{\lambda^2}$$

$$\mathbf{B} \qquad r(t) = \frac{-a\omega_0^2}{\lambda^2}\cos(\lambda t) + \frac{Ka^2}{\lambda^2}$$


$$C \qquad r(t) = \frac{-a\omega_0^2}{\lambda^2}\cos(\lambda t) + \frac{Ka}{\lambda}$$

$$\mathbf{D} \qquad r(t) = \frac{-a\omega_0^2}{\lambda^2} \cos(\lambda t) + \frac{Ka}{\lambda^2}$$

artie II : Mouvement d'une voiture sur un plan incliné

ne voiture gravite un plan incliné, faisant un angle α avec l'horizontal. Le véhicule est modélisé comme uit : une roue avant, une roue arrière et une tige.

La roue avant, motrice, dite roue 1 dans la suite. est assimilée à un disque de rayon a, de masse m, de centre d'inertie G_1 confondu avec son centre géométrique; on note $J = \frac{1}{2}ma^2$ le moment d'inertie de la roue par rapport à son axe. On repère la position de G_1 par son abscisse x_1 sur l'axe (Ox) et la rotation de la roue par l'angle θ_1 par rapport à la verticale. On note I_1 le point d'impact de la roue 1 avec le sol.

- La roue arrière, porteuse, non motrice, dite roue 2 dans la suite, de centre d'inertie G_2 , de même masse m, de même rayon a et de même moment d'inertie J par rapport à son axe. On repère la position de G_2 par son abscisse x_2 sur l'axe (Ox) et la rotation de la roue par l'angle θ_2 . On note I_2 le point
- L'ensemble S {carcasse de la voiture et moteur}, de masse M, est modélisé par une tige, de longueur 2b, reliant G_1 et G_2 . Le centre d'inertie G de S est le milieu de $G_1G_2=2b$. L'abscisse de G est noté x.
- Le coefficient de frottement entre une roue et le sol, identique pour les deux roues est noté f
- Les actions de l'ensemble S sur la roue 1 en G_1 sont réductibles à une résultante $\vec{F}_1 = F_{1x}\vec{e}_x + F_{1z}\vec{e}_z$ et à un
- L'action de l'ensemble S sur la roue 2 en G_2 est réductible à une résultante $\vec{F}_2 = F_{2x}\vec{e}_x + F_{2z}\vec{e}_z$.
- L'action du sol sur la roue 1 est réductible à une résultante $\vec{R}_1 = T_1 \vec{e}_x + N_1 \vec{e}_z$ et sur la roue 2 à une résultante
- On suppose que les deux roues roulent sans glisser sur le sol, $(m \ll M)$ et le référentiel $R(O \times v \neq v)$ est

مباراة توظيف أساتذة التعليم الثانوي الأطر النظامية للأكاديميات - دورة توتير 2022

التخصص : القيزياء والكيمياء

الاختبار: اختبار في مادة أو مواد التخصص

(EE)	Les conditions du par el	الاختيار: اختيار عي
	Ton gusseme	nt en I_1 et I_2 conduisent aux relations suivantes :
A	$\dot{x} = 2\dot{x}_1 = 2\dot{x}_2$	conduisent aux relations suivantes :

A
$$\dot{x} = 2\dot{x}_1 = 2\dot{x}_2$$
 ; $\dot{\theta}_1 = \dot{\theta}_2 = \frac{\dot{x}}{2}$

B.
$$\dot{x} = \dot{x}_1 = \dot{x}_2$$
 ; $\dot{\theta}_1 = \dot{\theta}_2 = \frac{\dot{x}}{\dot{x}}$

C
$$\dot{x} = \dot{x}_1 = \dot{x}_2$$
 : $\dot{\theta}_1 = \dot{\theta}_2 = \frac{\dot{x}}{2a}$

D
$$\dot{x} = 2\dot{x}_1 = 2\dot{x}_2$$
 ; $\dot{\theta}_1 = \dot{\theta}_2 = \frac{2\dot{x}}{a}$

Par application du théorème de la résultante cinétique à la roue 1 et à la roue 2 on

A.
$$m\ddot{x} = -mg\sin\alpha + F_{1x} + T_1 = -mg\sin\alpha + F_{2x} + T_2$$
 ; $N_1 + F_{1z} = N_2 + F_{2z} = mg\cos\alpha$

B
$$m\ddot{x} = mg\sin\alpha + F_{14} + T_1 = mg\sin\alpha + F_{2x} + T_2$$
 ; $N_1 + F_{1z} = N_2 + F_{2z} = mg\cos\alpha$

C
$$m\ddot{x} = -mg\sin\alpha + F_{1x} = -mg\sin\alpha + F_{2x}$$
 ; $N_1 + F_{1x} = N_2 + F_{2x} = mg\cos\alpha$

D
$$m\ddot{x} = -mg\sin\alpha + T_1 = -mg\sin\alpha + T_2$$
 ; $N_1 + F_{1z} = N_2 + F_{2z} = mg\cos\alpha$

Par application du théorème du moment cinétique à la roue 1 en G_{i} et à la roue 2 en 2000年末 G, on obtient:

$$\mathbf{A} \qquad \ddot{x} = \left(\frac{\Gamma}{m\alpha} - \frac{T_1}{m}\right) = \frac{-T_2}{m}$$

$$\mathbf{B} \quad \ddot{x} = 2\left(\frac{\Gamma}{m\alpha} - \frac{T_1}{m}\right) = \frac{-T_2}{m}$$

$$c$$
 $\ddot{x} = 2\left(\frac{\Gamma}{ma} - \frac{T_1}{m}\right) = \frac{-2T_2}{m}$ www.educaprof.com

$$\mathbf{D} \qquad \ddot{x} = 2\left(\frac{\Gamma}{m} - \frac{T_1}{m}\right) = \frac{-2T_2}{m}$$

Les expressions des composantes F_1 , et F_2 , sont :

A
$$F_{1s} = \frac{1}{2}m\ddot{x} + mg\sin\alpha - \frac{\Gamma}{a} \qquad ; \qquad F_{2s} = \frac{1}{2}m\ddot{x} + mg\sin\alpha$$

B
$$F_{1x} = m\ddot{x} + mg\sin\alpha - \frac{\Gamma}{a}$$
 ; $F_{2x} = m\ddot{x} + mg\sin\alpha$

$$C \qquad F_{1x} = \frac{3}{2}m\ddot{x} + mg\sin\alpha - \frac{\Gamma}{a} \qquad ; \qquad F_{2x} = \frac{3}{2}m\ddot{x} + mg\sin\alpha$$

D
$$F_{1x} = \frac{3}{2}m\ddot{x} + mg\sin\alpha + \frac{\Gamma}{\alpha}$$
 ; $F_{2x} = \frac{3}{2}m\ddot{x} - mg\sin\alpha$

مباراة توظیف اساتذة التطیع الثانوي الأطر النظامیة للأكادیمیات ـ دورة نوئیر 2022 العوضوع

التخصص: الفيزياء والكيمياء

العوضو الاختبار: اختبار في مادة أو مواد التخصص

037	Les expressions des composantes	F. et	F. sont:
The state of the	ato expressions des composantes	11: 00	2: 50111

A
$$F_{1z} = \frac{1}{2} \left(\frac{\Gamma}{b} - Mg \cos \alpha \right)$$
 ; $F_{2z} = -\frac{1}{2} \left(\frac{\Gamma}{b} + Mg \cos \alpha \right)$

$$\mathbf{B} \qquad F_{1z} = \left(\frac{\Gamma}{b} - Mg\cos\alpha\right) \qquad ; \qquad F_{2z} = -\left(\frac{\Gamma}{b} + Mg\cos\alpha\right)$$

$$C \qquad F_{1z} = -\frac{1}{2} \left(\frac{\Gamma}{b} - Mg \cos \alpha \right) \qquad ; \qquad F_{2z} = \frac{1}{2} \left(\frac{\Gamma}{b} + Mg \cos \alpha \right)$$

$$\mathbf{D} \qquad F_{1z} = \frac{3}{2} \left(\frac{\Gamma}{b} - Mg \cos \alpha \right) \qquad ; \qquad F_{2z} = -\frac{3}{2} \left(\frac{\Gamma}{b} + Mg \cos \alpha \right)$$

L'équation différentielle du mouvement de G s'écrit :

A
$$\ddot{x} = g \sin \alpha - \frac{\Gamma}{2Ma}$$

$$B \qquad \ddot{x} = \frac{2\Gamma}{m\alpha} - g\sin\alpha$$

C
$$\ddot{x} = \frac{\Gamma}{M\alpha} - g \sin \alpha$$

$$\mathbf{D} \qquad \ddot{x} = g \sin \alpha - \frac{\Gamma}{2ma}$$

La condition qui assure un mouvement accéléré du véhicule sur la pente est : ((1) 大豆剂

A
$$\Gamma > Mag \sin \alpha$$

B
$$\Gamma > 2Mag \sin \alpha$$
 www.educaprof.com

$$C \qquad \Gamma > \frac{1}{2} mag \sin \alpha$$

D
$$\Gamma > 2mag \sin \alpha$$

مباراة توظيف أساتذة التطيم الثانوي الأطر النظامية للأكاديميات - دورة نونبر 2022 الموضوع

التخصص: الفيزياء والكيمياء

الاختبار: اختبار في مادة أو مواد التخصص

Thermodynamique (4 points)

Un moteur thermique fonctionne réversiblement entre deux sources de températures variables au cours

- la température de la source chaude est notée $T_{c}(t)$;
- la température de la source froide est notée $T_F(t)$.

Les sources ont la même capacité thermique C et leurs températures initiales sont respectivement T_{0C} et T_{0F} . Le moteur fonctionne entre l'instant $t_0 = 0$ et un instant t_1 où l'équilibre est atteint.

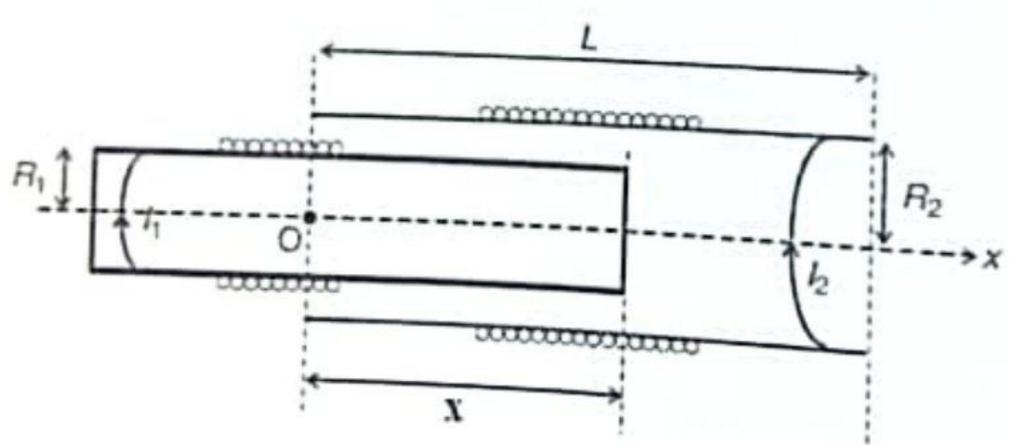
Q40	La relation entre $T_C(t)$, $T_F(t)$, T_{0C} et T_{0F} à un instant t s'écrit :
A	$T_{C}(t).T_{oC} = T_{F}(t).T_{oF}$
В	$T_C(t).T_F(t) = T_{0C}.T_{0F}$
С	T_{0C} , $T_{F}(t) = T_{C}(t)$, T_{0F}
D	$T_C(t).T_F(t) = \sqrt{T_{0C}.T_{0F}}$

191	L'expression de la température finale T_f atteinte par les deux sources est
A	$T_f = \sqrt{T_{0C}, T_{0F}}$
В	$T_{\mathcal{T}} = \sqrt{2T_{0C}.T_{0\mathcal{F}}}$
	$T_f = 2\sqrt{T_{0C} \cdot T_{0F}}$
D	$T_f = \frac{T_{0C} + T_{0F}}{2}$

(8,593)	L'expression du travail W fourni par le moteur pendant la durée du fonctionnement est:
Α.	$W = C.(\sqrt{T_{0C}} - \sqrt{T_{0F}})^2$
В	$W = C.(\sqrt{T_{0C}} + \sqrt{T_{0F}})^2$
С	$W = -C.(\sqrt{T_{0C}} - \sqrt{T_{0F}})^2$
_	

مهاراة توظيف أمداندة التعليم الثانوي الأطر النظامية للأكاديميات - دورة نونبر 2022 العوضو الاختبار : اختبار في ملاة أو مواد التخصص

العوضوع


التخصص: الفيزياء والكيمياء

043	L'expression de l'efficacité thermodynamique ou rendement e_{maxeur} de ce moteur est :
A	$e_{moscor} = \frac{\sqrt{T_{oC}} + \sqrt{T_{oF}}}{\sqrt{T_{oC}}}$
В	$e_{motous} = \frac{\sqrt{T_{oF}} - \sqrt{T_{oC}}}{\sqrt{T_{oC}}}$
C.	$e_{money} = \frac{T_{oC} - T_{oF}}{T_{oC}}$
D	$e_{\text{move}} = \frac{\sqrt{T_{0C}} - \sqrt{T_{0F}}}{\sqrt{T_{0C}}}$ www.educaprof.com

Électricité et électromagnétisme (23 points)

Partie I : Interaction magnétique de deux solénoïdes

Deux solénoïdes de même longueur L possédant le même nombre N de spires mais de rayons différents R_1 et R_2 sont disposés et maintenus comme indiqué sur la figure ci-dessous. Ils sont parcourus respectivement par des courants d'intensités I_1 et I_2 ,

CH)	L'expression du flux total crée par le grand solément	
A	L'expression du flux total crée par le grand solénoïde à $\phi = \frac{\mu_0 \pi x N^2 I_1 R_2^2}{L^2}$	travers le petit solénoïde est :
В	$\phi = \frac{\mu_0 \pi x N^2 I_2 R_1^2}{L^2}$	
C	$\phi = \frac{\mu_0 \pi x N^2 I_2 R_1^2}{L}$	
, a	$\phi = \frac{\mu_0 \pi x N I_2 R_1^2}{L^2}$	

D

مباراة توظيف اساتذة التعليم الثانوي الأطر النظامية للأكاديميات - دورة نونبر 2022 الموضوع

التخصص: الفيزياء والكيمياء

الاختبار: اختبار في مادة أو مواد التخصص

(0)15	L'expression de la résultante des forces	qui s'exerce sur le petit solénoïde est :
Α,	$F_{x} = \frac{\mu_{0}\pi N^{2}I_{1}I_{2}R_{1}^{2}}{L^{2}}$	
B	$F_x = \frac{\mu_0 \pi N^2 I_1^2 R_2^2}{L^2}$	•
C	$F_{x} = \frac{\mu_{0}\pi N^{2} I_{2}^{2} R_{1}^{2}}{L}$	•
D	$F_x = \frac{\mu_0 \pi N I_1 I_2 R_1^2}{L^2}$	

13(6)	L'expression de l'énergie potentielle d'interaction du petit solénoïde e
A	$W_i = -\frac{\mu_0 \pi x N^2 I_1^2 R_2^2}{L^2}$
В	$W_i = -\frac{\mu_0 \pi x N I_2^2 R_1^2}{L^2}$
C	$W_i = -\frac{\mu_0 \pi x N^2 I_1 I_2 R_1^2}{L}$
D .	$W_i = -\frac{\mu_0 \pi x N^2 I_1 I_2 R_1^2}{L^2}$

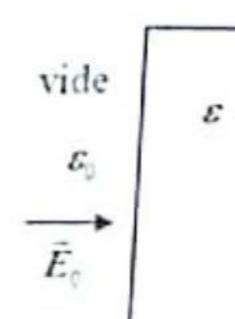
On abandonne le petit solénoïde à lui-même, le grand restant fixe. Les expressions de la position finale x de l'extrémité du petit solénoïde ainsi que son énergie potentielle d'interaction W_f dans son état final sont :

A x = L ; $W_f = -\frac{\mu_0 \pi N^2 I_1 I_2 R_1^2}{L}$ B x = L ; $W_f = -\frac{\mu_0 \pi N^2 I_1^2 R_1^2}{L}$ C $x = \frac{L}{2}$; $W_f = -\frac{\mu_0 \pi N^2 I_1 I_2 R_1^2}{2L}$

التخصص: الليزياء والكيمياء

L'expression du travail des forces magnétiques au cours de ce déplacement est :

A	$W = \frac{\mu_0 \pi N^2 I_1^2 R_2^2}{I} \left(1 - \frac{\mu_0 \pi N^2 I_1^2 R_2^2}{I} \right)$	$-\frac{x}{t}$
	1	1. /


$$\mathbf{B} = \frac{\mu_0 \pi N l_2^2 R_1^2}{L} \left(1 - \frac{x}{L} \right)$$

$$C = \frac{\mu_0 \pi N^2 I_1 I_2 R_1^2}{L} \left(1 - \frac{x}{L} \right)$$

$$\mathbf{D} = \frac{\mu_0 \pi N I_1 I_2 R_1^2}{I_c} \left(1 - \frac{x}{L} \right)$$

Partie II : Lame diélectrique

Une lame diélectrique isotrope de permittivité ε est placée dans le vide et soumise à un champ électrique \tilde{E}_n normal à ses faces. On suppose que l'épaisseur du diélectrique est petite par rapport à ses autres dimensions, que le champ \tilde{E} à l'intérieur du diélectrique à \vec{E}_p et que la polarisation \vec{P} est uniforme à l'intérieur du diélectrique.

L'expression du champ \tilde{E} à l'intérieur du diélectrique est :

$$\mathbf{A} \qquad \vec{E} = \frac{\mathcal{E}_0}{\mathcal{E}_r} \vec{E}_O$$

www.educaprof.com

$$\mathbf{B} = \frac{\mathcal{E}_0}{\mathcal{E}} \, \vec{E}_O$$

$$\vec{E} = \frac{E_s}{E} \vec{E}_O$$

$$\mathbf{D} \qquad \vec{E} = \varepsilon_0 \left(1 - \frac{1}{\varepsilon_*} \right) \vec{E}_{ij}$$

L'expression de la polarisation \vec{P} du diélectrique est :

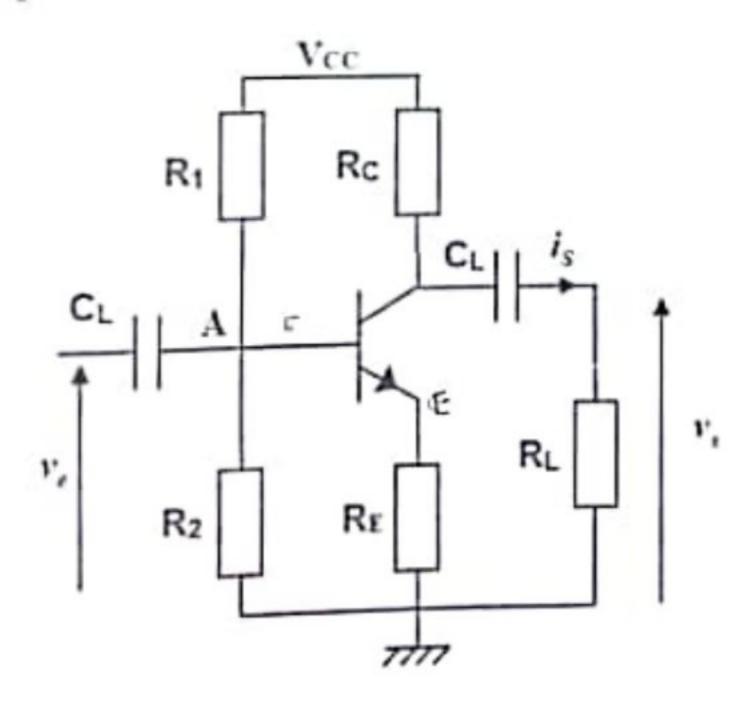
$$\vec{P} = \varepsilon \left(1 - \frac{\varepsilon_0}{\varepsilon}\right) \vec{E}_0$$

$$\mathbf{B} \qquad \widehat{P} = \frac{\mathcal{E}_0}{\mathcal{E}} \, \vec{E}_O$$

$$C \qquad \vec{P} = \varepsilon_0 \left(1 - \frac{\varepsilon_0}{\varepsilon} \right) \vec{E}_O$$

$$\mathbf{D} \qquad \vec{P} = \varepsilon_0 \left(\frac{\varepsilon_0}{\sigma} - 1 \right) \vec{E}_{co}$$

مباراة توظيف أساتذة التعليم الناتوي الأطر النظامية للأكاديميات - دورة نونبر 2022 الموضوع الموضوع التخصيص: الفيزياء والكيمياء


الاختبار: اختبار في مادة أو مواد التخصص

051	L'expression du champ dépolarisant \vec{E}_p dû aux charges de polarisation est :
A	$\vec{E}_P = \frac{\vec{P}}{\varepsilon_0}$
В.	$\vec{E}_P = -\frac{1}{2\varepsilon_0}\vec{P}$
С	$\vec{E}_P = \frac{1}{2\varepsilon_0}\vec{P}$
D	$\vec{E}_P = -\frac{\vec{P}}{\varepsilon_0}$

Partie III: Electronique analogique

On considère l'amplificateur à transistor bipolaire de la figure ci-dessous utilisé en émetteur commun. Le capacités de liaison C_L sont assimilées à des courts-circuits à la fréquence de travail. Le coefficient d'amplification en courant est noté β .

On pose :
$$R_B = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

مباراة توظيف أساتذة التعليم الثانوي الأطر النظامية للأكاديميات - دورة نونبر 2022 الموضوع الاختبار: اختبار في مادة أو مواد التخصص

التخصص: القيزياء والكيمياء

Les expressions de $I_{\mathcal{B}}$ et V_{CE} coordonnées du point de fonctionnement du montage sont:

A
$$I_B = \frac{\frac{V_{CC}R_B}{R_B} - V_{BE}}{R_B + (\beta + 1)R_E}$$
 ; $V_{CE} = V_{CC} - [\beta R_C + (\beta + 1)R_E]I_B$

$$I_{B} = \frac{\frac{V_{CC}R_{B}}{R_{2}} - V_{BE}}{R_{B} + (\beta + 1)R_{E}} \qquad ; \quad V_{CE} = V_{CC} - [\beta R_{C} + (\beta + 1)R_{E}]I_{B}$$

$$C I_B = \frac{\frac{V_{CC}R_B}{R_1} - V_{BE}}{R_B + (\beta + 1)R_E} ; V_{CE} = V_{CC} - \beta [R_C + R_E]I_B$$

$$I_{B} = \frac{\frac{V_{CC}R_{1}}{R_{B}} - V_{BE}}{R_{B} + (\beta + 1)R_{E}} \qquad ; \quad V_{CE} = V_{CC} - \beta [R_{C} + R_{E}]I_{B}$$

L'expression du gain en tension A, est: 053

$$\mathbf{A} = -\frac{h_{21}R_{c}}{(R_{c} + R_{L})[h_{11} + (h_{21} + 1)R_{E}]}$$

$$\mathbf{B} = -\frac{h_{21}R_{C}R_{L}}{(R_{C} + R_{L})[h_{11} + h_{21}R_{E}]}$$

$$\mathbf{C} = \frac{h_{21}R_C}{(R_C + R_L)[h_{11} - (h_{21} + 1)R_E]}$$

$$\mathbf{D} \qquad A_{V} = -\frac{h_{21}R_{C}R_{L}}{(R_{C} + R_{L})[h_{11} + (h_{21} + 1)R_{E}]}$$

L'expression de l'impédance de sortie $Z_{\mathcal{S}}$ en charge est:

$$\mathbf{A} \qquad Z_S = \frac{R_C . R_L}{R_C + R_L}$$

$$\mathbf{B} \qquad Z_S = \frac{R_F . R_L}{R_E + R_L}$$

$$C \qquad Z_S = \frac{R_C.R_L.R_E}{R_C + R_L + R_E}$$

$$C Z_S = \frac{R_C.R_L.R_E}{R_C + R_L + R_E}$$


$$D Z_S = \frac{R_C.R_L}{R_C + R_L} + R_E$$

مباراة توظيف أساتذة التعليم الثانوي الأطر النظاميه للاعاديموا الموضوع التخصص: الفيزياء والكيمياء الاختبار: اختبار في مادة أو مواد التخصص

Optique et ondes (10 points)

Partie I : Interférences lumineuses

On se propose de mesurer d'une manière précise par un procédé interférentiel l'épaisseur e d'une lame par la lame à l'aide d'une lunette réglée pour voir un objet à l'infini. L'axe de la lunette est eylindrique de lumière monochromatique de longueur d'onde $\lambda = 0.750 \,\mu m$ dans l'air, arrive en incidence proche de l'incidence normale sur la lame. Pour cette radiation l'indice du verre est n = 1, 5.

125	L'expression de l'ordre d'interférence p_k de la k^{teme} frange est :	
Α,	$p_k = \frac{2ne\cos r_k}{\lambda} + \frac{1}{2}$	
В	$p_k = \frac{2ne\cos r_k}{\lambda}$	_
С	$p_k = \frac{2e\cos r_k}{\lambda} + \frac{1}{2}$	_
D	$p_k = 2ne\cos r_k + \frac{\lambda}{2}$	_

	On pose $k = p_0 - p_k$, p_0 l'ordre d'interférence au centre. En supposant le centre sombre et les angles d'incidences i_k très faibles, l'expression du rayon de la k^{ieme} frange sombre est:
A	$x_k = f' \sqrt{\frac{\lambda}{e}} . \sqrt{k}$
В	$x_{k} = f' \sqrt{\frac{\lambda}{e}} . \sqrt{k}$ $x_{k} = f' . k . \sqrt{\frac{n\lambda}{e}}$
c	$x_i = f' \sqrt{\frac{n\lambda}{a}} . \sqrt{k}$
D	$x_k = f' \sqrt{\frac{\lambda}{ne}} . \sqrt{k}$

(O.778	Le rayon de la deuxième fran lame est:	nge sombre mesure 9mm. La valeur de l'épaisseur e de la
A	e=2,9mm	c colt
В	e = 2.5 mm	0101.
C .	e = 1.8 mm	Micak
D	e = 1,5 mm	ww.educaprof.

Partie II : Propagation d'une onde électromagnétiques dans le vide

Une onde électromagnétique plane sinusoïdale de pulsation ω se propage dans le vide dans une direction \vec{u} du plan xOy faisant un angle θ avec l'axe Ox. Le champ électrique \vec{E} de cette onde plane, polarisée rectilignement suivant la direction Oz de vecteur unitaire \vec{e}_z s'écrit en notation complexe au point M(x,y,z) à l'instant t: $\vec{E}(M) = E_0.e^{j(\omega t - \omega t - by)}\vec{e}_z$

0.88	La relation qui lie a,b,ω et c s'écrit :	
Α.	$\frac{\omega}{c} = \sqrt{a^2 + b^2}$	
В	$\omega.c = \sqrt{a^2 + b^2}$	
С	$\frac{\omega}{c} = a^2 + b^2$	
D	$\omega \cdot c = a^2 + b^2$	

الصفحة 23

مباراة توظيف اساتذة التعليم الثانوي الأطر النظامية للأكاديميات - دورة نونبر 2022 الموضوع

التخصص: الفيزياء والكيمياء

الاختبار: اختبار في مادة أو مواد التخصص

(0)50)	La direction de proj	pagation de l'onde est donné par :	
A	$\cos\theta = \frac{b}{\sqrt{a^2 + b^2}}$	$; \sin \theta = \frac{a}{\sqrt{a^2 + b^2}}$	
В	$\cos\theta = \frac{a}{\sqrt{a^2 + b^2}}$	$; \sin \theta = \frac{b}{\sqrt{a^2 + b^2}}$	
C	$\cos\theta = \frac{a^2}{\sqrt{a^2 + b^2}}$	$; \sin \theta = \frac{b^2}{\sqrt{a^2 + b^2}}$	
D	$\cos\theta = \frac{b^2}{\sqrt{a^2 + b^2}}$	$; \sin \theta = \frac{a^2}{\sqrt{a^2 + b^2}}$	

L'expression du vecteur champ magnétique
$$\vec{B}$$
 de l'onde est :

$$\vec{A} \quad \vec{B} = \frac{aE_0}{\omega} e^{j(\omega t - ax - by)} \vec{e}_x + \frac{bE_0}{\omega} e^{j(\omega t - ax - by)} \vec{e}_y$$

$$\vec{B} \quad \vec{B} = \frac{bE_0}{\omega} e^{j(\omega t - ax - by)} \vec{e}_x + \frac{aE_0}{\omega} e^{j(\omega t - ax - by)} \vec{e}_y$$

$$\vec{C} \quad \vec{B} = \frac{aE_0}{\omega} e^{j(\omega t - ax - by)} \vec{e}_x - \frac{bE_0}{\omega} e^{j(\omega t - ax - by)} \vec{e}_y$$

$$\vec{D} \quad \vec{B} = \frac{bE_0}{\omega} e^{j(\omega t - ax - by)} \vec{e}_x - \frac{aE_0}{\omega} e^{j(\omega t - ax - by)} \vec{e}_y$$