Année scolaire: 2022 – 2023

Examen national 2015 session normale annulée

Exercice 1 : (2015 Session annulée) (3pts) Soit dans l'espace muni d'un repère orthonormé direct $(\mathbf{O}, \mathbf{i}, \mathbf{j}, \mathbf{k})$ les points A(2; 1; 0), B(-4; 1; 0) et soit (P) le

plan passant par le point A et de vecteur normal $\mathbf{u} = \mathbf{i} + \mathbf{j} - \mathbf{k}$.

- 1) Montrer que : x + y z 3 = 0 est une équation cartésienne du plan (P).
- 2) Soit (S) l'ensemble des points M de l'espace qui vérifient:

$\mathbf{MA} \cdot \mathbf{MB} = 0$

Montrer que (S) est une sphère de centre $\Omega(-1; 1; 0)$ et son rayon R = 3

- 3) a) Calculer la distance du point Ω au plan (P) puis déduire que (P) coupe (S) suivant un cercle (C).
- b) Montrer que le centre du cercle (C) est H(0; 2; -1).
- 4) Montrer que : $\overrightarrow{OH} \wedge \overrightarrow{OB} = \overrightarrow{i} + 4\overrightarrow{j} + 8\overrightarrow{k}$ puis calculer la surface du triangle OHB.

Exercice 2: (2015 Session annulée) (3pts)

I - On considère le nombre complexe u tel que :

$$\mathbf{a} = 2 + \sqrt{2} + \mathbf{i}\sqrt{2}$$

- 1) Montrer que le module du nombre complexe **a** est $2\sqrt{2} + \sqrt{2}$
- 2) Vérifier que : $\mathbf{a} = 2(1 + \cos\frac{\pi}{4}) + 2\mathbf{i}\sin\frac{\pi}{4}$
- 3) a) En linéarisant $\cos^2 \theta$, θ est un nombre réel montrer que : $1 + \cos 2\theta = 2\cos^2 \theta$
- b) Montrer que $\mathbf{a} = 4\cos\frac{\pi}{2}(\cos\frac{\pi}{2} + \mathbf{i}\sin\frac{\pi}{2})$ est une

forme trigonométrique du nombre a montrer que

$$\mathbf{a} = \left(2\sqrt{2 + \sqrt{2}}\right)^4 \mathbf{i}$$

II - On considère, Dans le plan rapporté à un repère orthonormé direct (**O**;**e**₁;**e**₂) on considère les deux points Ω et A d'affixes respectives ω et a tels que :

 $\omega = \sqrt{2}$; $\mathbf{a} = 2 + \sqrt{2} + \mathbf{i}\sqrt{2}$ et la rotation R de centre Ω et d'angle $\frac{\pi}{2}$.

- 1) Montrer que l'affixe b du point B image du point A par la rotation R est **2i**.
- 2) Déterminer l'ensemble des points M d'affixes z tel que : |z - 2i| = 2

Exercice 3: (2015 Session annulée) (3pts)

Une caisse U₁ contient 7 boules : quatre boules rouges et trois boules vertes (indiscernables au toucher). Une caisse U₂ contient 5 boules : trois boules rouges et deux boules vertes (indiscernables au toucher).

I) On considère l'expérience suivante : on tire au hasard et en même temps 3 boules de U₁.

Soit l'événements A" Obtenir une boule rouge et deux boules vertes" et l'événement B " Obtenir trois de la même couleur "

AGOUZAL

2 BPCF

Montrer que $\mathbf{P}(\mathbf{A}) = \frac{12}{35}$ et $\mathbf{P}(\mathbf{B}) = \frac{1}{7}$

II) On considère l'expérience suivante : on tire au hasard et en même temps 2 boules de U_1 , puis on tire au hasard une boules de U₂.

Soit C l'événement : "Obtenir trois boules rouges"

Montrer que $\mathbf{P}(\mathbf{C}) = \frac{6}{35}$

Problème : (2015 Session annulée) (8pts)

On considère la fonction f définie par :

$$\mathbf{f}(\mathbf{x}) = \frac{1}{\mathbf{x}(1 - \ln \mathbf{x})}$$

- (C_f) est la courbe représentative de f dans le repère orthonormé ($\mathbf{O}; \mathbf{i}; \mathbf{j}$) (unité : 2 cm)
- I) 1)Montrer que : $\mathbf{D_f} = [0; \mathbf{e}] \cup [\mathbf{e}; +\infty]$
- 2) a) Calculer $\lim_{\mathbf{x}\to\mathbf{e}^+} \mathbf{f}(\mathbf{x})$ et $\lim_{\mathbf{x}\to\mathbf{e}^-} \mathbf{f}(\mathbf{x})$ puis

interpréter les résultats géométriquement.

b) Calculer $\lim \mathbf{f}(\mathbf{x})$ puis en déduire que (C_f)

admet une asymptote au voisinage de +∞ dont on précisera une équation

c) Montrer que $\lim f(x) = +\infty$ puis interpréter les

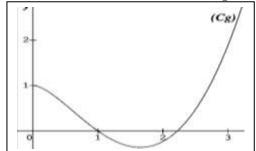
résultats géométriquement(pour calculer $\lim f(x)$ $\mathbf{x} \rightarrow 0^+$

(remarquer que $x(1 - \ln x) = x - x \ln x$)

- 3) a Montrer que: $\mathbf{f}'(\mathbf{x}) = \frac{\ln \mathbf{x}}{\mathbf{x}^2 (1 \ln \mathbf{x})^2} \quad \forall \mathbf{x} \in \mathbf{D}_{\mathbf{f}}$
- b) Montrer que f est décroissante sur [0,1] et croissante sur chacun des intervalles [1;e[et $]e;+\infty[$
- b Dresser le tableau des variations de f sur $\mathbf{D_f}$
- II) Soit g la fonction définie sur $]0;+\infty[$ par :

$$\mathbf{g}(\mathbf{x}) = 1 - \mathbf{x}^2 (1 - \ln \mathbf{x})$$

- (C_g) est la courbe représentative de g dans le repère orthonormé (**O**; **i**; **j**) (voir figure)
- 1) a) Déterminer graphiquement de solution de l'équation suivante (E): $\mathbf{g}(\mathbf{x}) = 0; \mathbf{x} \in [0; +\infty[$



Année scolaire: 2022 – 2023

Examen national 2015 session normale annulée

AGOUZAL 2 BPCF

b) On donne le tableau des valeurs suivantes :

X	2,1	2,2	2,3	2,4
g(x)	-0,14	-0,02	0,12	0,28

Montrer que l'équation (E) admet une solution α telle que $2, 2 < \alpha < 2, 3$

2) a) Vérifier que :
$$\mathbf{f}(\mathbf{x}) - \mathbf{x} = \frac{\mathbf{g}(\mathbf{x})}{\mathbf{x}(1-\ln \mathbf{x})} \quad \forall \mathbf{x} \in \mathbf{D_f}$$

- b) Montrer que la droite (Δ) d'équation y = x coupe la courbe (C_f) en deux points d'abscisses 1 et α
- c) Déterminer à partir de (C_g) le signe de la fonction g sur l'intervalle $[1;\alpha]$ et montrer que $f(x)-x\leq 0$ pour tout x de $[1;\alpha]$
- 3) Tracer dans le même repère $(\mathbf{O}; \mathbf{i}; \mathbf{j})$, la droite (Δ) et la courbe (C_f) .

4) a) Montrer que
$$\int_{1}^{\sqrt{\mathbf{e}}} \frac{1}{\mathbf{x}(1-\ln \mathbf{x})} \mathbf{dx} = \ln 2$$
 (remarquer que $\frac{1}{\mathbf{x}(1-\ln \mathbf{x})} = \frac{\frac{1}{\mathbf{x}}}{(1-\ln \mathbf{x})}$ $\forall \mathbf{x} \in \mathbf{D_f}$

b) Calculer en cm² l'aire du domaine plan délimité par (C_f) la droite (Δ) et les droites d'équations x=1 et $\mathbf{x}=\sqrt{\mathbf{e}}$ III) On considère la suite (U_n) définie par :

$$\mathbf{U}_{\mathbf{n}+1} = \mathbf{f}(\mathbf{U}_{\mathbf{n}}) \ \forall \mathbf{n} \in \mathbb{N} \quad \text{et } \mathbf{U}_0 = 2$$

- 1) Montrer que : $1 \le U_n \le \alpha$ $\forall n \in \mathbb{N}$
- 2) Montrer que la suite (U_n) est décroissante (on pourra utiliser le résultat de la question II) 2) c))
- 3) En déduire que la suite (U_n) est convergente et calculer sa limite.