Cours :  Dérivation et étude des fonctions 2 bac SMA

Cours :  Dérivation et étude des fonctions 2 bac SMA

Derivation and Function Analysis

I. Derivative Fundamentals

Formal Definition

f'(a) = lim h→0 f(a+h) − f(a) h

Geometric interpretation: f'(a) represents the slope of the tangent line to the curve at x = a.

a y = f'(a)(x-a) + f(a)

II. Derivation Rules

Basic Derivatives

Function Derivative
xn (n ∈ ℕ*) nxn-1
1 x 1 x2
sin x cos x

Operation Rules

Sum Rule:

(u + v)’ = u’ + v’

Product Rule:

(uv)’ = u’v + uv’

Quotient Rule:

u v
⎞′ =
u’v − uv’ v2

III. Applications

Function Behavior

For a differentiable function f on interval I:

  • If ∀x ∈ I, f'(x) ≥ 0 ⇒ f increasing on I
  • If ∀x ∈ I, f'(x) ≤ 0 ⇒ f decreasing on I
  • If ∀x ∈ I, f'(x) = 0 ⇒ f constant on I
f'(x) > 0 ⇒ f strictly increasing

Local Extrema

Necessary condition:

If f has a local extremum at a and is differentiable at a, then f'(a) = 0.

Practical method:

  1. Solve f'(x) = 0
  2. Study the sign of f’ around critical points
  3. Determine the nature of critical points

IV. Complete Function Analysis

Methodology

  1. Domain of definition
  2. Limits at boundaries and asymptotes
  3. First derivative f'(x)
  4. Variation table
  5. Graphical representation

Example: f(x) = 2x3 – 3x2 – 12x + 5

1. Domain: Df = ℝ

2. Derivative:

f'(x) = 6x2 − 6x − 12 = 6(x − 2)(x + 1)

3. Variation table:

x -∞ -1 2 +∞
f'(x) + 0 +
f(x) 12

4. Extrema:

  • Local maximum at (-1,12)
  • Local minimum at (2,-15)

1 Comment

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *